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Photoreactions involving N,N-dimethylated a-amino acid salts and N-methylphthalimide are dominated
by photoreduction and acetone trapping. Only, N-phenyl glycinate underwent photodecarboxylative
addition in a moderate yield of 30%. In contrast, N-acylated a-amino acid salts readily gave addition prod-
ucts in fair to high yields of 20–95%. Comparison experiments with N,N-dimethylacetamide and amino-/
amido-containing phthalimides revealed the origin of the crucial electron-transfer step and the reactivity
order NR3 » RCO2

� P RCONR2 was established.
� 2010 Elsevier Ltd. All rights reserved.
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The photochemistry of phthalimides has attracted considerable
attention over the last two decades, and a number of efficient and
selective transformations have been realized.1 Photodecarboxyla-
tive additions of carboxylates, a-keto carboxylates and hetero-
atom-substituted carboxylates to phthalimides, for example, have
been developed as versatile alternatives to Grignard additions.2

To explore further the scope of this attractive application, we be-
came interested in using amino acid derivatives as starting materi-
als. Three nitrogen-containing carboxylates 2a–c were thus
irradiated at 300 nm in aqueous acetone in the presence of N-
methylphthalimide (1, Scheme 1).3 With N,N-dimethylated amino
acids 2a and 2c, only photoreduction to 4 and 5, and acetone trap-
ping to 6 was observed (Table 1). Conversion rates and product ra-
tios varied depending on the irradiation time as demonstrated for
N,N-dimethylglycine (2a). The desired photoaddition product 3
could only be obtained when the potassium salt of N-phenyl gly-
cine (2b) was used as the starting material.4 The reaction was slug-
gish, but the addition product 3b was isolated in a yield of 30%
after column chromatography. Due to the low oxidation potentials
of tertiary amines (NR3: EOx = 0.7–1.3 vs SCE5), photoinduced elec-
tron transfer (PET) reactions involving phthalimides are highly
exergonic. This suggests that electron transfer is followed by rapid
photoreduction through hydrogen abstraction, a commonly
observed side reaction of amines. In fact, photoaddition products
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fax: +61 (0)7 4781 6078.
(M. Oelgemöller).
similar to 3 were only obtained in low yields with simple amines
as reaction partners.6,7

Photoreductions by amines are known to be sensitive towards
the presence of water.8,9 The reaction involving 2-(dimethyl-
amino)acetic acid was thus carried out using dry acetonitrile as
solvent. The reaction again proceeded rather sluggishly, but after
2 h the photoreduction product 4 was identified as the main prod-
O
6

O
5

Scheme 1. Photoreaction of 1 with nitrogen-containing carboxylates 2a–c.
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Table 1
Product compositions and experimental details for photoadditions of 1 with 2a–c

2 R1 R2 R3 Time (h) Product compositiona (%)

1 3 4 5 6

a Me Me H 1 — — 37 34 29
a Me Me H 18 — — 4 45 51
b Ph H H 4 25 41b 19 5 10
c Me Me Bn 3 33 — 36 21 10

a Determined by 1H NMR spectroscopy of the crude reaction mixture.
b Isolated yield 30%.
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uct. Hence, the outcome of the photoreactions involving nitrogen-
containing carboxylic acids or carboxylates predominantly de-
pends on the structure of the acid, in particular the substituents
at the nitrogen, and not necessarily on the presence of water.

Likewise, a set of N-acylated glycine salts 7a–h was irradiated
in the presence of 1 under the conditions of the photodecarboxyla-
tive addition (Scheme 2; Table 2).10 In contrast to their N-alkylated
counterparts all the experiments proceeded readily and the corre-
sponding addition products 8a–h were collected in moderate to
excellent yields of 20–95% after just 1–4 h of irradiation.11 Only
in the case of Fmoc-protected glycine 7f were larger amounts of
unidentified by-products detected in the crude NMR spectrum,
but no attempt was made to isolate these products.

Since phthalimides are known to react via H-abstraction reac-
tions,1a N-methylphthalimide (1) was furthermore irradiated in
the presence of 5 equiv of N,N-dimethylacetamide (9) (Scheme
3). After irradiation for 5 h, no addition (8b) or photoreduction
products (4/5) were observed. Instead, 1 was reisolated in 81%
yield. Hence, photoadditions via H-abstraction do not contribute
to the formation of the addition products 8.
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Scheme 2. Additions of N-protected glycine salts 7a–h to 1.

Table 2
Yields and experimental details for photoadditions of 1 with 7a–h

8 R1 R2 R3 Time (h) Yield (%)

a Ac H H 2 71 (75a)
b Ac Me H 1 73
c Ac Ph H 1 95
d Boc H H 1 74
e Cbz H H 4 56
f Fmoc H H 2 20b

g Ac H Me 4 83
h Ac H (CH2)5 3 80

a Yield based on a conversion of 1 of 95%.
b Larger amounts of unknown by-products detected.
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Scheme 3. Attempted addition of N,N-dimethylacetamide (9) to 1.
For related photocyclizations of phthaloyl peptides, different
scenarios for the crucial photoinduced electron transfer (PET)12

step have been proposed. Whereas Yoon and Mariano suggested
an electron transfer from the amide linker,13 Griesbeck and
Oelgemöller postulated an electron transfer from the carboxylate
function instead.14 The latter scenario is supported by successful
macrocyclization of dipeptides with terminal x-amino acids. In or-
der to establish the origin of the crucial photoinduced electron
transfer step, the phthalimides 10a–c carrying potential donor sub-
stituents on the N-side chain were irradiated in the presence of
potassium propionate 11 (Scheme 4; Table 3).

The amine-derived phthalimide 10a completely prevented
photodecarboxylative addition and showed extensive photode-
composition, as noticeable from its poor recovery of 23%. Unselec-
tive photodegradation of 10a was also observed in the absence of
11. In contrast, the incorporation of an amide group into the N-side
chain had no influence on the ethylation and the corresponding
addition products 12b and 12c were obtained in moderate yields
of 43% and 51%, respectively.15 Cyclization products arising from
competing intramolecular CH activations or PET reactions were
not detected.16,17

The general mechanistic scenario for photoreactions of amino
acids with N-methylphthalimide is depicted in Scheme 5. For the
amino-carboxylates 2, electron transfer from the nitrogen gives
the corresponding radical ion pair (path A). For phenyl glycinate,
subsequent a-decarboxylation and carbon bond formation yields
the addition product 3b. For the dialkylated amino acids, stepwise
photoreduction is observed instead.18 N-acylation of the amino
acids 7 restored photoreactivity. This suggests that the crucial elec-
tron transfer step now occurs primarily from the carboxylate func-
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Scheme 4. Addition of propionate 11 to phthalimides 10a–c.

Table 3
Yields and experimental details for photoadditions of 10a–c with 11

12 X Time (h) Conversiona (%) Yield (%)

a NMe 4 — (23b)
b CONH 4 95 43 (45c)
c CONMe 4 95 51 (54c)

a Determined by 1H NMR spectroscopy of the crude reaction mixture.
b Reisolated 10a.
c Yields based on conversion.
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tion (path B) as supported by the oxidation potentials of the com-
peting electron donors (EOx RCONR2 P EOx RCO2

�).19 Subsequent
decarboxylation of the resulting carboxy radical to the correspond-
ing carbon-centred radical and carbon bond formation furnish the
observed addition products 8.20

An additional argument for the mechanistic scenario comes from
the attempted photoaddition of dimethylacetamide to 1. Since no
addition product could be detected, electron transfer from the amide
function (similar to path A in Scheme 5) appears energetically not
feasible.21,22 Likewise, amide groups within the N-side chain, as in
compounds 10b and 10c, did not prevent photodecarboxylative
ethylation. If electron transfer would operate from the amide-linker,
complete deactivation could be expected as, for example, is known
for thioether-derived phthalimides (10; X = S).23

In conclusion, N,N-dialkylated amino acid salts only undergo
unselective photoreductions and acetone trapping. In contrast,
N-phenyl glycine and N-acylated a-amino acid salts undergo
photodecarboxylative addition to 1. The simple protocol makes this
transformation interesting for ‘micro-photochemistry’, that is, pho-
tochemistry in micro-structured reactors.24
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